Intro:
Fuzzy logic is an approach to computing based on "degrees of truth" rather than the usual "true or false" (1 or 0) Boolean logic on which the modern computer is based.The idea of fuzzy logic was first advanced by Dr. Lotfi Zadeh of the University of California at Berkeley in the 1960s. Dr. Zadeh was working on the problem of computer understanding of natural language. Natural language (like most other activities in life and indeed the universe) is not easily translated into the absolute terms of 0 and 1. (Whether everything is ultimately describable in binary terms is a philosophical question worth pursuing, but in practice much data we might want to feed a computer is in some state in between and so, frequently, are the results of computing.)
Fuzzy logic includes 0 and 1 as extreme cases of truth (or "the state of matters" or "fact") but also includes the various states of truth in between so that, for example, the result of a comparison between two things could be not "tall" or "short" but ".38 of tallness."
Fuzzy logic seems closer to the way our brains work. We aggregate data and form a number of partial truths which we aggregate further into higher truths which in turn, when certain thresholds are exceeded, cause certain further results such as motor reaction. A similar kind of process is used in artificial computer neural network and expert systems..
It may help to see fuzzy logic as the way reasoning really works and binary or Boolean logic is simply a special case of it
What is fuzzy logic?
Fuzzy logic is a superset of conventional (Boolean) logic that has beenextended to handle the concept of partial truth -- truth values between
"completely true" and "completely false". It was introduced by Dr. Lotfi
Zadeh of UC/Berkeley in the 1960's as a means to model the uncertainty
of natural language.
Zadeh says that rather than regarding fuzzy theory as a single theory, we
should regard the process of ``fuzzification'' as a methodology to
generalize ANY specific theory from a crisp (discrete) to a continuous
(fuzzy) form . Thus recently researchers
have also introduced "fuzzy calculus", "fuzzy differential equations",
and so on.
Fuzzy Subsets:
Just as there is a strong relationship between Boolean logic and theconcept of a subset, there is a similar strong relationship between fuzzy
logic and fuzzy subset theory.
In classical set theory, a subset U of a set S can be defined as a
mapping from the elements of S to the elements of the set {0, 1},
|
one ordered pair present for each element of S. The first element of the
ordered pair is an element of the set S, and the second element is an
element of the set {0, 1}. The value zero is used to represent
non-membership, and the value one is used to represent membership. The
truth or falsity of the statement
x is in U
|
statement is true if the second element of the ordered pair is 1, and the
statement is false if it is 0.
Similarly, a fuzzy subset F of a set S can be defined as a set of ordered
pairs, each with the first element from S, and the second element from
the interval [0,1], with exactly one ordered pair present for each
element of S. This defines a mapping between elements of the set S and
values in the interval [0,1]. The value zero is used to represent
complete non-membership, the value one is used to represent complete
membership, and values in between are used to represent intermediate
DEGREES OF MEMBERSHIP. The set S is referred to as the UNIVERSE OF
DISCOURSE for the fuzzy subset F. Frequently, the mapping is described
as a function, the MEMBERSHIP FUNCTION of F. The degree to which the
statement
|
x. The DEGREE OF TRUTH of the statement is the second element of the
ordered pair.
In practice, the terms "membership function" and fuzzy subset get used
interchangeably.
That's a lot of mathematical baggage, so here's an example. Let's
talk about people and "tallness". In this case the set S (the
universe of discourse) is the set of people. Let's define a fuzzy
subset TALL, which will answer the question "to what degree is person
x tall?" Zadeh describes TALL as a LINGUISTIC VARIABLE, which
represents our cognitive category of "tallness". To each person in the
universe of discourse, we have to assign a degree of membership in the
fuzzy subset TALL. The easiest way to do this is with a membership
function based on the person's height.
|
A graph of this looks like:
Given this definition, here are some example values:
|
Logic Operations:
Now that we know what a statement like "X is LOW" means in fuzzy logic,how do we interpret a statement like
X is LOW and Y is HIGH or (not Z is MEDIUM)
The standard definitions in fuzzy logic are:
truth (not x) = 1.0 - truth (x)
truth (x and y) = minimum (truth(x), truth(y))
truth (x or y) = maximum (truth(x), truth(y))
Some researchers in fuzzy logic have explored the use of other
interpretations of the AND and OR operations, but the definition for the
NOT operation seems to be safe.
Note that if you plug just the values zero and one into these
definitions, you get the same truth tables as you would expect from
conventional Boolean logic. This is known as the EXTENSION PRINCIPLE,
which states that the classical results of Boolean logic are recovered
from fuzzy logic operations when all fuzzy membership grades are
restricted to the traditional set {0, 1}. This effectively establishes
fuzzy subsets and logic as a true generalization of classical set theory
and logic. In fact, by this reasoning all crisp (traditional) subsets ARE
fuzzy subsets of this very special type; and there is no conflict between
fuzzy and crisp methods.
used :
it is in a shower head that controlled water temperature. Fuzzy logic is now used to optimize automatically the wash cycle of a washing machine by sensing the load size, fabric mix, and quantity of detergent and has applications in the control of passenger elevators, household appliances, cameras, automobile subsystems, and smart weapons.
0 comments:
Post a Comment
Thanks for your Valuable comment